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Abstract: 

Sensory areas should be adapted to the properties of their natural stimuli. What 
are the underlying rules that match the properties of complex cells in primary 
visual cortex to their natural stimuli? To address this issue we sampled movies 
from a camera carried by a freely moving cat, capturing the dynamics of image 
motion as the animal explores an outdoor environment. We use these movie 
sequences as input to simulated neurons. Following the intuition that many 
meaningful high-level variables, e.g. identities of visible objects, do not change 
rapidly in natural visual stimuli, we adapt the neurons to exhibit firing rates that 
are stable over time. We find that simulated neurons, which have optimally stable 
activity, display many properties that are observed for cortical complex cells. 
Their response is invariant with respect to stimulus translation and reversal of 
contrast polarity. Furthermore, spatial frequency selectivity and the aspect ratio of 
the receptive field quantitatively match the experimentally observed 
characteristics of complex cells. Hence, the population of complex cells in the 
primary visual cortex can be described as forming an optimally stable 
representation of natural stimuli.  

 

Keywords : Primary Visual Cortex, Cat, Receptive fields, Unsupervised Learning, 
Sparseness, Stability,  
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Introduction 

Most neurons in the primary visual cortex can be classified into one of two 
generic cell types. The simple cells respond selectively to bars and gratings 
presented at a specific position, orientation, spatial frequency and contrast polarity 
(Hubel and Wiesel. 1962; Schiller et al. 1976b). The neurons of the other type, 
complex cells, also respond to bars or gratings of adequate orientation and spatial 
frequency. They, however, respond equally well regardless of the contrast polarity 
of the stimulus and its precise location within the region of the receptive field 
(Hubel and Wiesel. 1962; Kjaer et al. 1997).  

The properties of sensory neurons, including the complex cells, can be 
expected to be well adapted to the statistics of the stimuli they are exposed to 
under natural conditions.  

The most prominent hypothesis of how neural properties should be 
adapted to the statistics of natural scenes is called “sparse coding”. It states that 
sensory neurons should be selective to specific features, only responding strongly 
to a small subset of stimuli, but otherwise showing low activities (Barlow 1961; 
Fyfe and Baddeley 1995; Olshausen and Field 1996). This theory could well 
explain the properties of simple cells in primary visual cortex (Bell and Sejnowski 
1997; Olshausen and Field 1996; Van Hateren and van der Schaaf 1998).  

Under what assumption about the objective of adaptation do simulated 
neurons develop the same properties as complex cells? To derive such an 
objective we start with the insight that it is one of the tasks of the brain to extract 
relevant sensory features (Barlow 1961). Relevant variables, such as the 
description of a visual scene in terms of objects, change on a slower time scale 
than low level features, such as luminance in a small spatial region. If we, for 
example, see an animal such as a tiger, it usually stays around for some time. 
However, the position of the image of its stripes on the retina changes on a shorter 
timescale. Such insight has lead to the development of criteria that measure the 
stability or temporal coherence of the responses of simulated neurons (Becker 
1999; Einhäuser et al. 2002; Földiak 1991; Kayser et al. 2001; Klopf 1982; Stone 
and Harper 1999; Sutton and Barto 1981; Wallis and Rolls 1997; Wiskott and 
Sejnowski 2002). These studies have successfully applied this criterion to the 
representations of artificial stimuli such as moving bars to establish that such a 
mechanism could lead to complex-type neurons (Földiak 1991; Wiskott and 
Sejnowski 2002). However, by using such simple stimuli the population of 
neurons does not obtain a rich enough distribution to be thoroughly compared to 
physiology.  
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Here we apply a similar stability criterion to the representations of natural 
stimuli. We then compare the resulting neuronal response properties, i.e. their 
selectivity to orientation and spatial frequency as well as their response 
modulation and aspect ratio, to those of complex cells in primary visual cortex. 

Methods 

Stimuli 
We study the response properties of simulated neurons after adaptation to image 
sequences of natural scenes. A freely moving cat explores the forest located next 
to the campus in Zürich while carrying a miniature CCD camera (for details see 
Einhäuser et al. 2002) on its head that samples the natural visual input. This 
procedure is carried out in accordance with institutional and national guidelines of 
animal care. A video of 3000 frames, recorded at 25 frames per second, digitized 
at a resolution of 4.5 pixel/deg and converted to grayscale using the MATLAB 
rgb2gray function, is used for this study. Ideally we would like to take a single 
long sequence from the central region of the video. Such a sequence however 
would need to be prohibitively long to uniformly sample the stimulus material. 
That is why we instead take pairs of patches measuring 30 by 30 pixels from 
randomly selected, but matching locations within two subsequent frames in the 
movie. Temporal coherence is evaluated between the patches of the same pair, 
approximating the optimal sampling process. The patches are first multiplied 
pointwise with a Gaussian kernel centered over the patch whose standard 
deviation (width) was 10 pixels. This procedure has a limited effect on the amount 
of information available in the input stream, but avoids edge effects and the 
anisotropy inherent in square patches. Repeating the simulations below without 
this windowing leads to qualitatively similar results (data not shown). The 
receptive field obtained in such simulations are localized, do not cover the full 
patch and are approximately round too. The resulting patches are decomposed 
into their principal components. The first component, representing the mean patch 
brightness, is removed. Components 2 through 100 carry more than 95% of the 
variance and define a vector I, which defines the input to the optimization 
algorithm. As the activity of each subunit linearly depends on the input, the 
preprocessing of the input by a principal component analysis, which is also linear 
transformation, has no influence on the optimization process. Discarding the 
higher order components, however, does have an effect. As these components 
carry only a small part of the total variance we do not expect an influence of this 
step on the results obtained. Indeed, this assumption is supported by the results of 
a recent study (Kayser et al. 2001). On the positive side, as the number of 
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dimensions of the optimization problem is reduced by a factor of 9 a significant 
increase in computational efficiency is achieved. 

Simulated Neurons 
Complex cells, in contrast to simple cells, display several strong nonlinear 
properties (Chance et al. 1999; Movshon et al. 1978; Ohzawa et al. 1997; Spitzer 
and Hochstein 1988). Hence, it is not possible to describe them adequately by 
linear models, and we have to consider nonlinear model neurons. Identical to the 
choice in a number of other studies (e.g. Hyvärinen and Hoyer 2000) we chose the 
the two subunit energy model (Adelson and Bergen 1985; Hyvärinen and Hoyer 
2000).  

Each such model neuron consists of two subunits (Figure 1A). Each of the 
subunits computes the scalar product of the same input patch (I) with a weight 
vector (W1,i, W2,i respectively). Hence each neuron is characterized by two linear 
receptive fields. Both outputs are subsequently squared and summed to define the 

neurons activity: ( ) ( )2 2

i 1, 2,A = i iW I W I+  .  

These simulated neurons can, given appropriate weights, exhibit a large 
variety of response properties. Most of these properties are never observed for real 
neurons. The simulated neurons can however also act like a complex cell if both 
subunits have Gabor-wavelet like receptive fields with identical orientation and 
spatial frequency, and the two wavelets have a relative phaseshift of 90º (Figure 
1B). If such a neuron is excited by a visual stimulus in form of a bar that is moved 
over it’s receptive field, each subunit has an activity that depends on the bar’s 
position. As the bar is shifted the subunits alternate in having large squared 
activity. Thus, the neurons activity, the sum of the squared subunits activities, 
changes only little as the bar is moved within the receptive field. Given the large 
number of parameters (twice the length of the weight vector) involved in 
determining the response properties of these model neurons, such complex cell 
like properties are only one among many other conceivable outcomes.  

Optimization 
The input consists of image patches that are extracted from successive frames of 
the movies. To simulate the adaptation process we optimize the parameters of a 
population of 100 neurons so that their responses are maximally coherent over 
time while being decorrelated from one another. This is done by maximizing the 
following objective function: 
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Here, <> denotes the average over all stimuli, and thus over time; i,tA is the activity 

of neuron i at time t, minus its mean over all times. stableΨ  takes on large negative 

values if the output activities change fast. It thus punishes fast temporal 
variations. The 40 ms lag between two successive time points used in that 
objective function is well within the range of strong correlations of orientations in 
natural stimuli (Einhäuser et al. 2002). DecorrΨ on the other hand takes on large 

negative values in the case of correlated activities of different neurons and thus 
punishes such correlations. The average squared value of each subunit’s activity is 
multiplicatively normalized to be one each iteration of the algorithm.  

The parameters of the model neurons are optimized by scaled gradient 
descent. For Ψ  this leads to a local Hebb-type learning rule. The weight 

change is local to the synapse and depends only on pre- and postsynaptic 
activities at two subsequent points in time.  

stable

We furthermore compare our results to the work of Hyvärinen and Hoyer 
(2000). In this work they simulate a set of optimally sparse neurons that are 
modeled as 4-subunit energy models. All subunits are constrained to have 
uncorrelated output thus effectively enforcing a phase shift of 90 degrees. We 
repeat their simulations, using their code with our data as input. In this simulation 
24 energy detector neurons with four subunits are used. We also perform a 
number of control simulations where we substitute stableΨ with one of a number of 

alternative definitions of sparseness.  

Data analysis 
In analogy to physiological experiments we characterize the response properties 
of the model neurons by several indices. The orientation tuning width is 
calculated as the range of orientations for which the response to a bar of optimal 
position is above 1/  of the maximal activity. The best orientation 2 ϕ  is defined 
as the stimulus orientation that leads to maximal responses. The selectivity for 
spatial frequency is defined via the range of spatial frequencies to which the 
response exceeds 1/ of the maximal level (Schiller et al. 1976b). The 
difference between the lower and upper bound of this range is then multiplied by 
100. We measure the responses of neurons to drifting sinusoidal gratings of 
optimal orientation and spatial frequency. The neurons AC/DC-ratio is the 
maximum minus the minimum divided by the mean of the resulting activity.  

2
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The models that are used for the modeling of complex cells, such as the 
two subunit energy model used here always respond to moving gratings with 
twice the temporal frequency of the moving grating as they respond equally well 
to bright and dark edges. This implies that the simulated neurons have a vanishing 
first harmonic (F1) while the second harmonic (F2) does not vanish. Real 
complex cells however show such frequency doubling only to a limited degree, 
and both components are small (Spitzer and Hochstein 1985; Heeger 1992). How 
should the AC/DC ratios of such simulated neurons be compared to the relative 
modulation of real neurons? Either we could compare the AC/DC ratio to the 
F2/F0 ratio of real neurons, assuming that the frequency doubling is just an 
artifact of the simulation method. Alternatively we could compare the AC/DC 
ratio of the simulated neurons to the F1 of the real neurons, which is the 
preferable method to distinguish complex cells from simple cells. In this scenario 
followed in this paper the simulated neurons should have small AC/DC ratio, 
compared to the relative modulation of real neurons. 

 

The envelope of the receptive field is defined as: 

. The length  and width V  (defined via the 

standard deviations) of the receptive field is calculated (using the abbreviation 

( ) ( ) ( )2
,1 ,2, ,i i iE x y W x y W x y≡ +

[

2, iL i

] ( ). max .,0
+
≡ ): 

( ) ( )( ) ( ) ( )2

,
sin cos , 0.5stdi i

x y
L x y E x y Eϕ ϕ i +
≡ + −  ∑  

( ) ( )( ) ( ) ( )2

,
cos sin , 0.5stdi i

x y
V x y E x y Eϕ ϕ i +
≡ − −  ∑  

Where x and y are the positions relative to the center of gravity of the receptive 
field. The aspect ratio is defined as . The subtraction and rectification 

prevents points with low values, lying far from the receptive field, from strongly 
influencing the aspect ratio. This is comparable to removing values below the 
noise level in physiological experiments. Histograms are compared using a one-
sided Kolmogorov-Smirnov (KS) test yielding the probability of both histograms 
being drawn from the same distribution. 

/iL Vi

Parametric studies 

In parametric studies we characterize the dependence of stableΨ  on the receptive 

field properties. To elucidate why sparse coding alone is not expected to result in 
complex cell type responses we also measure the dependence of a specific 
definitions of sparseness on the receptive field properties: 
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We repeat this simulation with the objective function derived from the Cauchy 
prior and the standard deviation obtaining essentially the same results. We use the 
same two-subunit model as in the optimization procedures above albeit with 
simplified receptive fields. Since the optimization methods result in Gabor type 
receptive fields and neuronal receptive fields are well approximated by these, we 
choose the subunits to be Gabor wavelets of fixed orientation and spatial 
frequency. The phase and aspect ratio of each subunit, however, remain free 
parameters: 

2 2 2 2( , , , , , ) sin(180 / )*exp(- /( ) - /( ) ),  x y x yG a s s s x y x a s x as y as= +  

where a, which is fixed to a value of 5 pixels, is the size of the Gabor, s is the 
relative shift between the subunits, and  are the relative length and width and 

x and y the relative positions of the pixels. For Figure 4B and C we choose 
identical shapes: W

xs ys

1=G(5,0,1,1), W2=G(5,s,1,1) and vary the shift, s, between the 
subunits. For Figure 4C we choose a fixed shift of 90°: W1= G(5,0,λ,w), 
W2=G(5,90°,λ,w) and vary length, λ, and width, w, between 0.5 and 4 in steps of 
0.1. Aspect ratios are binned in steps of 0.2 between 0.2 and 5.  

Results 

We simulate neurons and adapt them to display optimally stable activity over 
time. The resulting response properties are characterized by the receptive fields of 
their two subunits (Figure 2A). Most of the subunits exhibit a receptive field that 
is well described by a Gabor wavelet. They thus have receptive fields that are 
localized in the visual space and that are selective to orientation and spatial 
frequency. Most neurons exhibit a phase shift between the Gabor wavelets 
representing the receptive fields of each of its subunits that is close to a quarter 
cycle (90 degrees). This suggests that the response properties of the simulated 
neurons exhibit some translation invariance (sketched in Figure 1B), a key 
property of complex cells. The neurons are furthermore tuned to orientation and 
spatial frequency (Figure 2B,C see also Webster and De Valois 1985).  

In the following we quantitatively compare the simulated neurons’ 
responses to bars and gratings to those of real neurons. First we investigate the 
orientation specificity. In response to a bar of optimal width the population of 
optimized neurons displays a narrow orientation tuning (38° width, Figure 2A). 
This specificity is somewhat tighter than the tuning width of real complex cells 
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(56°, p<0.001 KS-test, Schiller et al. 1976a). The simulated neurons also exhibit a 
tight tuning (index of 51.9) to spatial frequency comparable to the tuning index of 
cortical neurons (average index of 46.9, Schiller et al. 1976b), although the small 
difference is significant (p<0.01 KS test). 

Next we compare real and simulated neurons on the basis of their response 
to moving gratings. In primary visual cortex, a bimodal distribution of relative 
modulation strengths is observed (Skottun et al. 1991) (Figure 3C). Complex cells 
are defined as having a relative modulation below 1.0, while simple cells are 
defined by larger values of the modulation ratio. In our simulations a wide 
bimodal distribution of AC/DC values is also observed. The AC/DC ratios of the 
optimally adapted complex cells have a mean (0.41) that is not significantly larger 
than the experimentally observed relative modulations (0.40, p>0.3 KS-test).  

Last we compare the aspect ratios of the receptive fields, defined as the 
ratio of its width relative to its length. Real complex cells have an aspect ratio of 
1.02 +- 0.2 (Ohzawa and Freeman 1997) (Figure 3D). The optimally adapted 
neurons have an aspect ratio of 1.09±0.3, closely matching the experimental 
values (p>0.3, t-test).  

AC/DC ratio and aspect ratio define the invariant processing performed by 
complex cells. Thus, the simulated neurons with optimally stable activity result in 
good fits to the measured properties of complex cells in the primary visual cortex. 

It has been proposed that combining sparse coding with appropriate 
boundary conditions also leads to complex cells (Hyvarinen and Hoyer 2000). We 
repeat that simulation using our stimulus database. This simulation yields neurons 
with an orientation selectivity of 37° and a spatial frequency selectivity of 40.5, 
both well in the range of the physiological values (56°, 46.9 respectively) and 
comparable to optimizing a stability objective (38°, 51.9 respectively). For the 
AC/DC ratio this simulation, however, results in a value of 0.65 that is far larger 
than the physiological value (0.40) and the result of optimizing a stability 
objective (0.41) (p<0.001 KS-test). Thus, combining a sparseness objective with 
additional boundary conditions does not result in sufficiently translation invariant 
neurons. Furthermore, the aspect ratio of 1.73 is far larger than the one observed 
for real complex cells (1.02, p<0.001 t-test). Similar results and equally 
significant deviations are found if we exchange stableΨ in our simulations by the 

objective function derived from a Cauchy prior as used by Olshausen and Field 
(1996) or the Kurtosis. This suggests that only the objective of stability 
adequately explains the properties of complex cells.  

The head mounted camera does not register changes in gaze associated 
with movements of the eyes. However, recent results indicate that under the 
conditions the stimuli were recorded eye movements contribute little to stabilizing 
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the retinal image (Möller et al. 2003). To control for possible residual stabilizing 
effects of eye-movements we perform two experiments: (1) We simulate eye 
movements that randomly stabilize 50% of the patches. (2) We randomly shuffle 
10% of the patches. The resulting receptive field properties are essentially 
unchanged in both cases. In particular in both cases they are translation invariant 
and have AC/DC ratios close to the relative modulation of physiological data 
(p>0.3 for both controls, KS-test). Therefore we do not expect major changes of 
the reported results if eye-movements of the cats under free viewing conditions 
were taken into account.  

To investigate if the results generalize to a more general nonlinear model 
or if the results are due to the way we constructed our model neurons we perform 
an additional simulation (Figure 4A). Simulated neurons consisting of 8 half-
squaring subunits are modeled. The neural properties resulting from optimizing 

stableΨ  are similar to those found for the two-subunit energy model described 

above. Importantly, the AC/DC ratio distribution is not significantly larger than 
the relative modulations of real complex cells (p>0.3, KS-test). Thus, the results 
do not critically depend on the constraints on the model neurons’ nonlinear 
properties defined by the two-subunit energy model. The type of the nonlinearity 
is set in our simulations. For the neurons to exhibit complex cell properties 
however the subunits need to obtain identical orientation and spatial frequency as 
well as the right phase shift. This simulation thus shows that these properties can 
be obtained from natural scenes even for varied neuron models. 

To better understand the above results we proceed to characterize some 
important nonlinear statistical properties of videos natural scenes. To do so we 
measure the objective values of simulated neurons in response to the videos of 
natural scenes. We choose the subunits of the same model as above to be Gabor 
wavelets of fixed orientation and spatial frequency, leaving the aspect ratio and 
the relative phase as free parameters. With this more restricted set of subunit 
receptive fields, we can systematically analyze the influence of the receptive field 
properties on various objective functions. Varying the relative phase of the 
subunits reveals that stableΨ  is maximal if the simulated neuron is translation 

invariant and the wavelets have a relative phase of 90 deg (Figure 4B). Neurons 
then represent localized oriented energy detectors and are translation invariant, as 
are real complex cells. We furthermore analyze the influence of the aspect ratio on 
the objective functions (Figure 4C). stableΨ  reaches its highest value for spherical 

receptive fields with an aspect ratio of about 1 similar to the value of real complex 
cells (Ohzawa and Freeman 1997). For comparison with other studies we also plot 
sparseness as a function of phase and aspect ratio which peaks at values that are 
far from those found in physiology. It thus seems that stability is a good candidate 
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for an adaptation criterion that links complex cells with the statistics of natural 
scenes. 

Discussion 

We have show that adaptation to a stability objective leads to simulated neurons 
sharing important spatial properties of complex cells in the primary visual cortex.  

Sparseness can be derived from several ideas such as minimizing energy 
consumption, optimal channel coding or searching for a meaningful representation 
of data. Stability can also be derived from various ideas: High level variables such 
as object identities are stable, stable variables can be transmitted through channels 
with lower bandwidth and learning is easier in a system where variables change 
slowly. 

Recently Hurri and Hyvarinen (2003) have proposed that optimizing 
stability of linear neurons in response to natural stimuli leads to receptive fields 
like those of simple cells. The stability of linear neurons however is always 
considerably lower than the stability of the nonlinear complex cells in our study. 
The authors furthermore use a slightly different objective that biases the neurons 
to be both stable and sparse. These results might still indicate that both simple and 
complex cell responses could be understood in a coherent framework derived 
from the idea of stability. 

In our simulations each neuron only saw the input stimulus windowed by a 
Gaussian. Parts of the properties of the neurons, in particular the aspect ratio 
could thus be affected by this preprocessing. Some of the simulated neurons 
however do have receptive fields that are smaller than the size of the Gaussian. 
There is a tendency for neurons to obtain localized receptive fields. It would be 
interesting for future studies to analyze if the distribution of receptive field sizes 
can be obtained exclusively from optimizing stability. Such studies would 
however need very large numbers of simulated neurons as they would need to 
jointly encode the retinal space in addition to the orientation and spatial frequency 
space. 

Do neurons found in primary visual cortex exhibit sparse or stable or 
maybe both types of response properties? Both objectives seem useful for 
processing in the nervous system. The question of which objective links the 
properties of natural scenes to the properties of complex cells is experimentally 
accessible. On one hand, for these analyses recordings from neurons in response 
to natural scenes would need to be compared to response to artificial stimuli such 
as bars or gratings. With respect to sparseness some experiments started to 
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address this issue (Baddeley et al. 1997; Vinje and Gallant 2000). If a large set of 
natural visual patterns is presented in sequence most of these are not effectively 
stimulating the recorded neuron. A small subset of stimuli, however, can activate 
the neuron strongly and elicit very high firing rates. Similar experiments could 
address how stable neural responses are. 

The fact that complex cells of adult animals are well described as an 
adaptation to a stability objective raises the question, whether this adaptation 
occurs on onto- or phylogenetic timescales. If there is an ontogenetic component 
to the development of complex cells, it allows the following experimental test of 
the stability hypothesis. Changing the environment during an animal’s critical 
period (e.g. by strobe rearing) would impair the development of complex cell type 
receptive fields. In particular there should be a range of strobe rates in which 
complex cells are severely affected, while simple cells are not. From 
measurements of correlation times in natural videos (Kayser et al. 2003) this rate 
is expected to be of the order of 10Hz.  

 If simple cells optimize a sparseness criterion and complex cells optimize 
a stability criterion, it is tempting to speculate, whether such a division of labor is 
repeated in higher areas. Indeed in a widely used architecture for invariant object 
recognition, the Neocognitron (Fukushima 1980), a hierarchical network with an 
alternation of simple and complex type cells is used. Hence it is interesting to 
build larger systems consisting of several layers, each optimizing an adequate 
objective. This could result in a hierarchical system allowing to predict the 
response properties of neurons in higher cortical areas and to relate the response 
properties of such neurons to the statistics of the real world. 
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Figure captions 

Fig. 1.  
 (A) Patches of size 30 by 30 are extracted from each frame, windowed by a 
circular kernel and fed into a network of neurons modeled as two subunit energy 
detectors. Each subunit sums up the common input weighted by its weightvector. 
The outputs are squared and added to obtain the output of the neuron. (B) The 
way such a model neuron can become translation invariant is sketched. Both 
subunits need to have receptive fields that are Gabor wavelets with a relative 
phaseshift of 90 deg. A bar of optimal orientation and spatial frequency is moved 
through the neurons receptive field. Whenever one subunit has a very positive or 
very negative activity the other one has an activity of about zero. The outputs of 
each subunit thus vary a lot while the sum of the outputs of the two subunits does 
not change much as the bar is moved. 

Fig. 2.  
Qualitative properties of the simulated neurons. (A) Pairs of receptive fields are 
shown of neurons with optimally stable activity. (B) The responses of two 
representative neurons to bars of changing orientations and widths (displayed at 
the optimal positions) are shown. (C) Responses of the same neurons to gratings 
of optimal phase and orientation but varying spatial frequency are shown. (D) The 
optimal orientation and optimal spatial frequency are plotted for all the simulated 
neurons. 

Fig. 3.  
Density distribution of properties of complex cells in primary visual cortex and of  
neurons with optimally stable activity. (A) The orientation tuning widths are 
shown for cortical complex cells in monkey cortex (Schiller et al. 1976a) and for 
the simulated neurons. (B) The selectivities to spatial frequency are shown for 
cortical complex cells in monkey cortex (Schiller et al. 1976b) and for the 
simulated neurons. (C) The relative modulation strengths are shown for a 
collection of 1061 cat complex cells replotted from (Skottun et al. 1991) along 
with the AC/DC ratio of the simulated neurons. (D) The distribution of aspect 
ratios is sketched for cat cortical neurons (Ohzawa and Freeman 1997). This is 
compared with the aspect ratios of the simulated neurons. 

Fig. 4.  
The influence of the parameters. (A) Neurons consisting of 8 halfsquaring 
(f(x)=x2 for x>0, f(x)=0 otherwise) subunits are modeled. The histogram of 
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AC/DC ratios is shown for cat complex cells (Skottun et al. 1991) and for the 
optimized neurons with 8 halfsquaring subunits each. (B) Back in the simple two-
subunit energy model, the objective functions stableΨ (thick lines) ,and 

(thin lines) are plotted as a function of the relative phase between subunits 

with Gabor shaped receptive fields. (C) Objective functions are plotted as a 
function of the aspect ratio. Error bars denote the s.e.m.  

kurtosisΨ
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Figure 2 
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Figure 3 
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Figure 4 
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